1. ¿Qué tipos de muestras no sería adecuada para estudios toxicológicos en sujetos vivos según la Orden JUS/1291/2010, de 13 de mayo?

- a) Sangre cavidad cardíaca en dos tubos de 5 ml, al menos uno con fluoruro sódico como conservante y oxalato potásico como anticoagulante, procurando llenar los tubos al máximo para evitar, en la medida de lo posible, la cámara de aire.
- b) Contenido o lavado gástrico, todo el disponible, que se recogerá en un frasco adecuado a la cantidad.
- c) Cabello y pelos. Para el estudio del consumo habitual de drogas de abuso e intoxicaciones crónicas por metales.
- d) Muestras no biológicas relacionadas con el sujeto: fármacos encontrados en el lugar de los hechos, recipientes o utensilios utilizados, jeringuillas, papelinas llenas o vacías.

2. En relación con los estudios bioquímicos en casos de muertes súbitas e intoxicación según la Orden JUS/1291/2010, de 13 de mayo, se debe tener en cuenta que:

- a) Para determinación de acetilcolinesterasas y/o pseudocolinesterasas en caso de posible intoxicación por plaguicidas organofosforados, el tiempo máximo que puede haber transcurrido desde el momento de la muerte hasta la toma de muestras debe ser inferior a una hora y se debe enviar muestra de sangre en un tubo con anticoagulante y refrigerado.
- b) Para determinación de acetilcolinesterasas y/o pseudocolinesterasas en caso de posible intoxicación por plaguicidas organofosforados, el tiempo máximo que puede haber transcurrido desde el momento de la muerte hasta la toma de muestras debe ser inferior a doce horas y se debe enviar humor vitreo sin adicción de ningún tipo de sustancia.
- c) Para determinación de acetilcolinesterasas y/o pseudocolinesterasas en caso de posible intoxicación por carbamatos, el tiempo máximo que puede haber transcurrido desde el momento de la muerte hasta la toma de muestras debe ser inferior a una hora y se debe enviar humor vitreo sin adicción de ningún tipo de sustancia.
- d) Para determinación de acetilcolinesterasas y/o pseudocolinesterasas en caso de posible intoxicación por carbamatos, el tiempo máximo que puede haber transcurrido desde el momento de la muerte hasta la toma de muestras debe ser inferior a doce horas y se debe enviar muestra de sangre en un tubo con anticoagulante y refrigerado.

3. En el etiquetado de los productos químicos es incorrecto que la frase que comience por H:

- a) Esté asignada a una clase o categoría de peligro.
- b) Esté codificada con un código alfanumérico Hxzz (x: tipo de peligro; z: número de orden de los peligros).
- c) Describa la medida o medidas recomendadas para minimizar o evitar los efectos adversos causados por la exposición a una sustancia.
- d) Esté escrita en la lengua o lenguas oficiales del estado/s en que se comercialice el producto.

4. En relación con los riesgos relacionados con la exposición a agentes biológicos, indique el enunciado incorrecto:

- a) El Coronavirus del síndrome respiratorio agudo grave (SARS-CoV) está clasificado como agente biológico del grupo 3.
- b) Si los resultados de la evaluación muestran que la exposición se refiere a un agente biológico del grupo 1 no es necesario notificar a la autoridad laboral.
- c) Dentro de la clasificación de agentes biológicos del grupo 1 se incluyen aquellos agentes biológicos para los que no existe generalmente profilaxis o un tratamiento.
- d) Se clasifican en función del riesgo de infección en el Real decreto 664/1997.

- 5. En relación con las medidas de protección frente a agentes químicos/biológicos en un laboratorio, indique el enunciado correcto:
 - a) Las vitrinas extractoras de gases permiten extraer los vapores y gases, así como inactivar a la mayoría de los microorganismos.
 - b) El agua del sistema lavaojos debe salir a alta presión y recomendable que sea templada.
 - c) Los guantes de protección de los equipos de protección individual se clasifican según su grado de impermeabilidad.
 - d) Un laboratorio de nivel de contención 2 debe contar con una puerta doble de acceso.
- 6. Según recomienda la Organización Mundial de la Salud (O.M.S) en el "Manual de Bioseguridad" y también según la Directiva del Consejo 90/679/CEE, para la protección de los trabajadores expuestos a agentes biológicos, es incorrecto que:
 - a) El laboratorio deba tener techos, paredes y suelos fáciles de lavar, impermeables a los líquidos y resistentes a la acción de las sustancias químicas.
 - b) En las poyatas haya que calcular una longitud de 2 metros lineales por persona.
 - c) Las puertas deban estar provistas de mirillas con cristal de seguridad de 40 por 23 cm, situado a la altura de la mirada.
 - d) El autoclave para la descontaminación del material de desecho infeccioso deba estar fuera del laboratorio en una sala anexa.

7. ¿Cuándo se deben utilizar los equipos de protección individual?

- a) Siempre, por ser una medida que garantiza la seguridad y salud de los trabajadores en el puesto de trabajo.
- b) Cuando los riesgos del puesto de trabajo no hayan sido evaluados.
- c) Cuando los riesgos no se puedan evitar o no puedan limitarse suficientemente por medios técnicos de protección colectiva o mediante medidas, métodos o procedimientos de organización del trabajo.
- d) Cuando el trabajador lo estime oportuno, en función de la peligrosidad de las actuaciones que esté llevando a cabo.
- 8. Según el RD 664/1997, de 12 de mayo, sobre la protección de los trabajadores contra los riesgos relacionados con la exposición a agentes biológicos durante el trabajo, un agente biológico que puede causar una enfermedad en el hombre y puede suponer un peligro para los trabajadores, siendo poco probable que se propague a la colectividad y existiendo generalmente profilaxis o tratamiento eficaz, se considera un:
 - a) Agente biológico del grupo 1.
 - b) Agente biológico del grupo 2.
 - c) Agente biológico del grupo 3.
 - d) Agente biológico del grupo 4.

9. Señale el enunciado incorrecto. Con respecto al proceso de desproteinización:

- a) Se emplean disolventes orgánicos porque actúan aumentando la solubilidad de las proteínas.
- b) Para la desproteinización de muestras biológicas se pueden emplear sales iónicas.
- c) Al realizar un proceso de desproteinización previo se reducen las interferencias de absorción a la longitud de onda 235 nm de la región ultravioleta.
- d) Disolventes orgánicos más polares serán menos efectivos en el proceso de desproteinización que disolventes orgánicos apolares.

10. Señale el enunciado incorrecto. Con respecto al proceso de filtración:

- a) Es un proceso de separación físico.
- b) Las fases implicadas deben ser de naturaleza sólido-líquido.
- c) El fundamento de la separación es por tamaño de las partículas.
- d) Las fuerzas que provocan la filtración puede ser la gravedad o la presión hidrostática (sobre presión o vacío).

11. Señale el enunciado correcto. Cuando se realiza una extracción líquido-líquido con soporte sólido:

- a) La función del soporte sólido es interaccionar con los analitos para mejorar el rendimiento de la extracción.
- b) El primer paso será activar el sólido que constituya el soporte.
- c) El medio sólido polar actúa como soporte del disolvente.
- d) El soporte debe ser apolar e inerte.

12. Señale el enunciado correcto. En una extracción mediante fase sólida (SPE):

- a) El adsorbente o fase estacionaria más utilizada es el octadecilsilano (C18) por su naturaleza polar.
- b) Los analitos de interés no interaccionan con la fase sólida.
- c) Para el paso de las fases líquidas se debe aplicar presión.
- d) Se basa en el reparto de los analitos presentes en una matriz generalmente acuosa, entre dos fases, una sólida y otra líquida.

13. Indique la respuesta incorrecta. Los factores que se deberán tener en cuenta a la hora de realizar una hidrólisis enzimática para análisis de benzodiacepinas en orina son:

- a) La temperatura de incubación de la muestra con la enzima.
- b) Tiempo de incubación de la muestra con la enzima.
- c) pH de la reacción.
- d) La actividad de la enzima ya viene establecida y certificada por el fabricante y es constante.

14. Señale la respuesta incorrecta. La adición de un patrón interno para la investigación de paracetamol en una muestra de sangre:

- a) Permitirá normalizar pérdidas del analito en los procesos de evaporación de extractos.
- b) Se deberá añadir al principio del proceso de extracción para control de las recuperaciones de todos los pasos del proceso de extracción.
- c) Se deberá emplear como patrón interno una sustancia habitual en las muestras para así tenerla optimizada en el método cromatográfico.
- d) Se emplea para determinar la concentración del paracetamol mediante el cálculo del factor de respuesta.

15. Para la determinación de los metales disueltos de una muestra de agua superficial, el tratamiento adecuado de la muestra será:

- a) Se realizará primero una filtración en membrana de 0,45 μm, seguido de una estabilización a pH < 2 y luego se hará la detección del metal en el agua.
- b) Primero se estabilizará a pH < 2, para después realizar filtración en membrana 0,45 μm y luego se hará la detección del metal en el agua.
- c) Se realizará una única filtración en membrana 0,45 µm y luego se realizará la detección del metal en los sólidos en suspensión.
- d) Se debe realizar una digestión ácida para posteriormente realizar la detección del metal en el agua.

- 16. Si en la autorización de vertido de aguas residuales industriales (ARI) otorgada a una empresa se especifica un valor límite de emisión del metal zinc (Zn) expresado como "metal total", la preparación de la alícuota de la muestra para la determinación de metales, y por lo tanto de Zinc, se realizará:
 - a) Primero una filtración en membrana de 0,45 μm, seguido de una estabilización a pH < 2 y luego se hará la detección del metal en el agua.
 - b) Primero estabilizar a pH < 2, para después realizar filtración en membrana 0,45 μm y luego hacer la detección del metal en el agua.
 - c) Una única filtración en membrana 0,45 µm y luego se realizará la detección del metal en el agua
 - d) Una digestión ácida para la detección del metal en la alícuota de agua.

17. Según la Orden JUS/1291/2010, de 13 de mayo, por la que se aprueban las normas para la preparación y remisión de muestras objeto de análisis por el Instituto Nacional de Toxicología y Ciencias Forenses, es cierto que:

- a) Para la investigación de metales los envases deberán ser de vidrio.
- b) En muestras líquidas se utilizarán como recipientes primarios, botes o botellas, de una capacidad de 2.000 ml.
- c) Los recipientes no tienen por qué ser aptos para ser precintados.
- d) En la orden JUS/1291/2010 no se contemplan normas generales de toma de muestras para la investigación de delitos contra el medio ambiente.

18. Para la separación y preparación de alícuotas a partir de una muestra de agua recibida para investigación de delitos contra el medio ambiente, se debe tener en cuenta que:

- a) Las alícuotas se deben mantener congeladas para evitar la precipitación de sustancias como carbonatos.
- b) Los recipientes para la conservación de las alícuotas deben ser de vidrio esmerilado o vidrio opaco.
- c) Los recipientes se deben llenar completamente sin dejar cámara de aire para evitar cambios en parámetros fisicoquímicos como pH o conductividad eléctrica.
- d) Se deberán adicionar conservantes para evitar cambios en la composición de compuestos, por ejemplo, polímeros.

19. Indique la respuesta incorrecta. En un ensayo de lixiviación de residuos granulares y lodos de conformidad con el estándar UNE EN 12457-4:2003:

- a) Primero se debe realizar la determinación de la humedad de la muestra.
- b) Este ensayo evalúa los constituyentes solubles que al ponerse en contacto con agua pueden ocasionar un riesgo potencial para el medio ambiente durante la reutilización o eliminación de residuos.
- c) Los tipos de muestras tendrán tamaño de partícula inferior a 10 mm.
- d) Se añadirá ácido acético 0,5 N en intervalos para conseguir que el pH adquiera un valor de 5±0,2.

20. Según la normativa vigente en relación con la producción de residuos peligrosos y su gestión en un laboratorio:

- a) Se podrán eliminar por desagüe siempre que se realice con una dilución mínima 1:50.
- b) Los laboratorios públicos no tienen obligación de cumplir el RD 833/88, por el que se aprueba el Reglamento para la ejecución de la Ley 20/1986, Básica de Residuos Tóxicos y Peligrosos.
- c) Está permitido realizar mezclas que permitan reducir la peligrosidad de estos y así no ser necesario su recogida por un gestor de residuos autorizado.
- d) La duración máxima de almacenamiento en condiciones de seguridad será de 6 meses, salvo autorización especial del órgano competente.

21. Un residuo peligroso identificado como HP3 según el Anexo III modificado por el Reglamento 1357/2014 de 18 de diciembre de 2014, hace referencia a:

- a) Residuos que, generalmente liberando oxígeno, pueden provocar o facilitar la combustión de otras sustancias.
- b) Residuos que, en contacto con el agua, desprenden gases inflamables en cantidades peligrosas.
- c) Residuos que inducen cáncer o aumentan su incidencia.
- d) Residuos que contienen una o varias sustancias que se sabe tienen efectos sensibilizantes para la piel o los órganos respiratorios.

22. La peligrosidad de los residuos viene determinada por la presencia de determinadas características que representan un riesgo. Estas características de peligrosidad se pueden clasificar en tres grandes grupos:

- a) Peligros físicos, Peligros para la salud y Peligros para el medio ambiente.
- b) Peligros físicos, Peligros químicos y Peligros radioactivos.
- c) Peligros para la salud humana, Peligros para la salud animal y Peligros para el medio ambiente.
- d) Peligros de explosión, Peligros de inflamabilidad y Peligros mutágenos.

23. Indique la respuesta incorrecta. Conforme al artículo 17.4 de la Ley 22/2011 el productor u otro poseedor inicial de residuos, para facilitar la gestión de sus residuos, está obligado a:

- a) Suministrar a las empresas autorizadas para llevar a cabo la gestión de residuos la información necesaria para su adecuado tratamiento y eliminación.
- b) Proporcionar a las Entidades Locales información sobre los residuos que les entreguen cuando presenten características especiales, que puedan producir trastornos en el transporte, recogida, valorización o eliminación.
- c) Informar inmediatamente a la administración ambiental competente en caso de desaparición, pérdida o escape de residuos peligrosos o de aquellos que por su naturaleza o cantidad puedan dañar el medio ambiente.
- d) Suscribir una garantía financiera que cubra las responsabilidades a que puedan dar lugar sus actividades atendiendo a sus características, peligrosidad y potencial de riesgo.

24. En cuanto a la gestión de residuos peligrosos, hay que tener en cuenta:

- a) Los residuos tóxicos y peligrosos no podrán almacenarse más de tres meses.
- b) Una vez se ha depositado un residuo peligroso en un envase, éste ya no podrá abrirse hasta su retirada.
- c) Todos los residuos desconocidos han de considerarse peligrosos.
- d) Todo la anterior es cierto.

25. Según la Orden JUS/1291/2010, de 13 de mayo, para el análisis de arsénico en intoxicaciones agudas y crónicas en fallecidos ¿qué muestras se remitirán?

- a) Sangre, orina, pelo y uñas.
- b) Sangre o suero, orina y pelo.
- c) Sangre, orina, pelo y riñón.
- d) Sangre, orina, bilis e hígado.

26. Según la Orden JUS/1291/2010, de 13 de mayo, ¿cómo se han de remitir los insectos adultos o imagos para su estudio criminalístico?

- a) Se remiten en un bote con virutas de madera y un algodón impregnado en acetato de etilo.
- b) Se matan previamente introduciéndolos en un recipiente con líquido conservante.
- c) Se remiten vivos, acompañados de un sustrato alimenticio, como por ejemplo hígado de pollo.
- d) Se remiten solos en un bote con la tapadera perforada.

27. Según la Orden JUS/1291/2010, de 13 de mayo ¿cuál de las siguientes afirmaciones es incorrecta sobre la remisión de líquidos para citología pleural, pericárdica y peritoneal?

- a) Se enviarán en fresco lo antes posible, refrigerados.
- b) Pueden enviarse diluidos en metanol del 50-60% en proporción 1:1.
- c) Pueden enviarse extensiones ya fijadas durante 4-5 minutos en una mezcla de alcohol-éter, a partes iguales.
- d) Pueden enviarse extensiones ya fijadas durante 4-5 minutos en metanol puro.

28. Según la Orden JUS/1291/2010, de 13 de mayo, ¿cómo debe enviarse el riñón para su estudio histopatológico?

- a) Completo.
- b) En secciones de unos 2 cm de grosor.
- c) Se cubrirá con papel poroso o paño y se llenará el recipiente completamente de formol.
- d) Se enviará la mitad de cada riñón en sección longitudinal media.

29. Según la Orden JUS/1291/2010, de 13 de mayo, en el estudio histopatológico de los casos de muerte súbita de lactantes, señale la respuesta incorrecta:

- a) Conviene remitir el tubo digestivo cerrado para mejor conservación de la mucosa.
- b) Se realizará la investigación según protocolo internacional adoptado por el INTCF.
- c) Se enviará el encéfalo, íntegro, según las normas generales.
- d) Se deben enviar todos los órganos.

30. ¿Cuál de las siguientes afirmaciones sobre la prueba de Griess es incorrecta?

- a) Se puede llevar a cabo sobre heridas.
- b) Revela la presencia de nitritos alrededor de un orificio de disparo.
- c) Es una prueba cualitativa pero con alta sensibilidad.
- d) Permite hacer una estimación de la distancia de disparo.

31. ¿Qué tipo de fijador es el ácido crómico?

- a) Fijador que actúa por cambios en el estado coloidal de las proteínas.
- b) Fijador que actúa por deshidratación tisular.
- c) Fijador que actúa por formación de sales con los tejidos.
- d) Fijador que actúa por reticulación de las proteínas.

32. Como regla general ¿cuál es la relación ideal entre el volumen de fijador y el de la pieza de tejido?

- a) 1 a 1.
- b) 5 a 1.
- c) 20 a 1.
- d) 40 a 1.

33. ¿Cuál es una de las principales ventajas del alcohol etílico como fijador?

- a) Tiene efecto mordiente.
- b) Precipita proteínas y glucógeno rápidamente.
- c) Es excelente para fijar lípidos.
- d) No produce retracción tisular.

34. ¿Cuál de las siguientes afirmaciones sobre el proceso de decalcificación es incorrecta?

- a) En general, el volumen del decalcificador debe ser 20 veces el de la pieza de tejido.
- b) La temperatura óptima es de 25° C.
- c) No es necesaria una fijación previa de la pieza.
- d) En el proceso se eliminan las sales de calcio presentes en los tejidos.

35. ¿Cuál de estas mezclas fijadoras no contiene formol?

- a) Líquido de Zenker.
- b) Líquido de Gendre.
- c) Solución de B-5.
- d) Líquido de Bouin.

36. ¿Cuál de estos productos puede usarse como líquido intermedio antes de la inclusión?

- a) Alcohol metílico.
- b) Benzol.
- c) Dióxido de etileno.
- d) Acetona.

37. ¿Por qué es necesaria la deshidratación de los tejidos antes de la inclusión en parafina?

- a) Porque así conseguimos que no se endurezca la pieza.
- b) Porque esto hace que la parafina se difunda en el agua tisular.
- c) Porque la parafina es insoluble en agua.
- d) No es necesaria la deshidratación si hemos utilizado un fijador adecuado.

38. ¿Qué tipo de microtomo es el denominado de portabloques deslizante o tipo Leitz?

- a) Un microtomo de oscilación o balanceo.
- b) Un microtomo de rotación o Minot.
- c) Un ultramicrotomo.
- d) Un microtomo de deslizamiento.

39. ¿Cuál de los siguientes medios de montaje es miscible en agua?

- a) Bálsamo de Canadá.
- b) Glicerina.
- c) Aceite de cedro.
- d) Resinas sintéticas.

40. Según la Orden JUS/1291/2010 de 13 de mayo, para una fijación adecuada de las muestras objeto de estudios histopatológicos, la proporción adecuada es:

- a) Volumen de formol / volumen de la muestra = 1/3.
- b) Volumen de la muestra = 3 x volumen de formol.
- c) Volumen de formol = 3 x volumen de la muestra.
- d) Volumen de formol = volumen de la muestra.

41. ¿Cuál de los siguientes colorantes se utiliza para teñir específicamente la cromatina?

- a) Safranina.
- b) Eritrosina.
- c) Naranja G.
- d) Fucsina ácida.

42. Los colorantes que, siendo de un determinado color, tienen la propiedad de teñir el tejido de un color distinto se denominan:

- a) Colorantes ortocromáticos.
- b) Colorantes metacromáticos.
- c) Colorantes artificiales.
- d) Colorantes azoicos.

43. ¿Cuál es la finalidad de la coloración topográfica?

- a) Permiten el estudio íntimo de las estructuras celulares.
- b) Permiten visualizar una sustancia química específica.
- c) Dan una visión de conjunto de las estructuras tisulares.
- d) Permiten el estudio íntimo de las estructuras tisulares.

44. ¿Cuál de estas técnicas de tinción no es adecuada para la visualización de microorganismos?

- a) Acid-fast bacteria.
- b) Tricrómico de Masson.
- c) Gram.
- d) Orceína.

45. ¿Qué sustancia se utiliza para aumentar la captación selectiva de un determinado colorante?

- a) Aclarante.
- b) Laca.
- c) Mordiente.
- d) Cromóforo.

46. Señale que características deben cumplir, de manera general, los analitos para poder ser detectados mediante cromatografía de gases:

- a) Deben estar disueltos en una disolución acuosa.
- b) Deben ser polares.
- c) Deben ser volátiles y térmicamente estables.
- d) Deben estar derivatizados.

47. En cromatografía de gases, el fundamento de la separación de los distintos compuestos de la muestra está basada en:

- a) La afinidad del analito por la fase estacionaria mientras es transportado por la fase móvil a través de una columna.
- b) La afinidad del analito por la fase móvil mientras es transportado por la fase estacionaria a través de una columna.
- c) La respuesta del analito en el detector acoplado al cromatógrafo.
- d) La repuesta del analito en el detector de espectrometría de masas.

48. En cromatografía de gases, una de las siguientes opciones no es un modo de inyección:

- a) Split/splitless.
- b) Desorción térmica.
- c) Absorción térmica.
- d) Inyección directa.

49. El detector de ionización de llama (FID) es un detector ampliamente utilizado en cromatografía de gases, el fundamento de este detector es:

- a) La desionización de los analitos en un electrodo.
- b) La desionización de los analitos en una llama de hidrógeno/aire.
- c) La ionización de los analitos en un electrodo.
- d) La ionización de los analitos en una llama de hidrógeno/aire.

50. Señale la razón principal por la que se usan reacciones de derivatización:

- a) Para disminuir la sensibilidad de los analitos y que puedan ser detectados.
- b) Para aumentar la sensibilidad de los analitos y que puedan ser detectados.
- c) Para eliminar las interferencias de la muestra.
- d) Para eliminar los analitos que no son de interés toxicológico.

51. La reacción de derivatización en la que un hidrógeno es sustituido por un grupo -CH3 se denomina:

- a) Diazotación.
- b) Perfluoración.
- c) Sililación.
- d) Metilación.

52. Señale las condiciones más adecuadas para realizar una derivatización mediante sililación:

- a) Añadir el agente derivatizante sobre el extracto seco y mantener durante 60 minutos a 60°C.
- b) Añadir el agente derivatizante sobre el extracto seco y mantener durante 60 minutos a temperatura ambiente.
- c) Añadir el agente derivatizante sobre el extracto acuoso y mantener durante 60 minutos a temperatura ambiente.
- d) Añadir el agente derivatizante sobre el extracto acuoso y mantener durante 60 minutos a 60°C.

53. Una de las aplicaciones del análisis toxicológico de muestras biológicas mediante espectrometría de absorción atómica es:

- a) Análisis de drogas de abuso habituales.
- b) Análisis de psicofármacos.
- c) Análisis de arsénico.
- d) Análisis de carboxihemoglobina.

54. La espectroscopía de absorción molecular se basa en:

- a) La medida de la transmitancia o de la absorbancia de las disoluciones.
- b) La medida de la transmitancia o de la absorbancia de los átomos.
- c) La medida de la longitud de onda de las disoluciones.
- d) La medida de la longitud de onda de los átomos.

55. En espectroscopia de emisión atómica, la fuente de plasma consiste en:

- a) Una mezcla no gaseosa conductora de electricidad que contiene electrones.
- b) Una mezcla gaseosa conductora de electricidad que contiene cationes y electrones.
- c) Una mezcla gaseosa conductora de electricidad que contiene cationes y neutrones.
- d) Una mezcla no gaseosa conductora de electricidad que contiene cationes y electrones.

56. Según la Orden JUS/1291/2010 de 13 de mayo, una de las precauciones que debe tomarse para proteger las muestras destinadas a estudios microbiológicos en casos de muerte de etiología no aclarada es:

- a) Se recogerán unos 100 mililitros del medio líquido donde se han producido los hechos.
- b) Es conveniente realizar la extracción de sangre por punción intracardiaca.
- c) Se enviarán porciones distales de los diferentes lóbulos del pulmón, principalmente el superior izquierdo.
- d) Se deberá recoger la mayor cantidad de sangre de ambos ventrículos por separado utilizando EDTA como anticoagulante.

57. Una de las aplicaciones del detector de diodo array para análisis de muestras biológicas es:

- a) Detección y cuantificación de fármacos, acoplado a un cromatógrafo de líquidos.
- b) Detección y cuantificación de fármacos, acoplado a un cromatógrafo de gases.
- c) Detección y cuantificación de metales, acoplado a un cromatógrafo de gases.
- d) Detección y cuantificación de metales, acoplado a un cromatógrafo de líquidos.

58. ¿En qué rango del espectro se utiliza el detector de diodo array?

- a) Atómico.
- b) Rayos X.
- c) Infrarrojo.
- d) Ultravioleta-visible.

59. Con respecto a la electroforesis:

- a) Es una técnica de separación basada en la distinta velocidad de migración de las sustancias bajo la acción de un campo eléctrico.
- b) Es una técnica de separación basada en la misma velocidad de migración de las sustancias bajo la acción de un campo eléctrico.
- c) Es una técnica de separación basada en la distinta velocidad de migración de las sustancias bajo la acción de un flujo de fase móvil constante.
- d) Es una técnica de separación basada en la misma velocidad de migración de las sustancias bajo la acción de un flujo de fase móvil constante.

60. Una de las aplicaciones en toxicología forense de la electroforesis capilar acoplada a un detector ultravioleta es:

- a) La determinación de alcoholemia en muestras de sangre.
- b) Realizar un screening toxicológico de muestra biológicas.
- c) La determinación de estroncio en muestras de humor vítreo.
- d) Realizar la cuantificación de metales pesados en muestras biológicas.

61. ¿Qué es el flujo electroosmótico?

- a) El movimiento relativo de un líquido con respecto de una superficie cargada bajo la acción de un campo eléctrico.
- b) El movimiento relativo de un gas con respecto de una superficie cargada bajo la acción de un campo eléctrico.
- c) El movimiento relativo de un líquido con respecto de una superficie neutra bajo la acción de un campo eléctrico.
- d) El movimiento relativo de un gas con respecto de una superficie neutra bajo la acción de un campo eléctrico.

62. La combinación de dos técnicas, una de separación y otra de inmunoensayo se denomina:

- a) Enzimoespectroscopia.
- b) Inmunoespectroscopia.
- c) Enzimoelectroforesis.
- d) Inmunoelectroforesis.

63. Los enzimoinmunoensayos son métodos analíticos basados en:

- a) Reacciones químicas basadas en la interacción entre la sustancia y su metabolito.
- b) Reacciones físicas basadas en la interacción entre antígeno y anticuerpo.
- c) Reacciones inmunológicas basadas en la interacción entre antígeno y anticuerpo.
- d) Reacciones inmunológicas basadas en la interacción entre la sustancia y su metabolito.

64. Señale cuál de las siguientes opciones no es un método basado en enzimoinmunoensayo:

- a) CEDIA.
- b) FPD.
- c) EMIT.
- d) ELISA.

65. Los inmunoensayos heterogéneos requieren:

- a) La separación del anticuerpo unido y antígeno libre antes de medir la señal.
- b) La separación del anticuerpo unido y antígeno libre después de medir la señal.
- c) No requieren la separación de anticuerpo unido y antígeno libre para medir la señal.
- d) La unión del anticuerpo unido y antígeno libre después de medir la señal.

66. El inmunoensayo ELISA es un inmunoensayo:

- a) Homogéneo, competitivo con marcador isotópico.
- b) Homogéneo, competitivo con marcador enzimático.
- c) Heterogéneo, en sándwich con marcador enzimático.
- d) Heterogéneo, competitivo con marcador enzimático.

67. Una de las desventajas de los inmunoensayos es:

- a) Presentan reactividad cruzada con compuestos similares estructuralmente al analito que se pretenden detectar.
- b) Son técnicas difíciles de manejar con tratamiento de muestras laboriosos.
- c) Tienen una baja sensibilidad.
- d) No están sistematizados por lo que la cantidad de muestras que se pueden analizar es limitada.

68. En un inmunoensayo el punto de corte o cut-off se define como:

- a) El valor de referencia por debajo del cual se establece que la muestra es presuntivamente positiva.
- b) El valor de referencia por encima del cual se establece que la muestra es presuntivamente positiva.
- c) El valor de referencia por encima del cual se establece que la muestra es presuntivamente negativa.
- d) El valor de referencia por debajo del cual se establece que la muestra es negativa a todas las drogas de abuso.

69. Según la Orden JUS/1291/2010, en el caso de remisión de muestras para realizar estudios de incendios forestales, se deberán remitir al laboratorio:

- a) Solo el material que se encuentre a más de 5 km del origen del incendio.
- b) Solo el material que se encuentre en el foco del incendio.
- c) Cualquier material que se encuentre en un radio de 5 km del origen del incendio.
- d) Cualquier material que pueda tener relación con el origen del incendio.

70. Según la Orden JUS/1291/2010, en el caso de remisión de muestras para realizar estudios sobre la fauna, se deberán remitir al laboratorio:

- a) En el caso de muertes de mamíferos y aves, se enviará el contenido estomacal del animal.
- b) En el caso de muertes de mamíferos y aves, se enviará el esófago del animal.
- c) En el caso de muertes de peces, se enviará el contenido estomacal del animal.
- d) En el caso de muertes de peces, se enviará el esófago del animal.

71. Según la Orden JUS/1291/2010, señale la respuesta correcta en el caso de remisión de muestras para vertidos de petróleo y derivados:

- a) Se deberán enviar las muestras que se consideren, sin determinar acuerdo con el laboratorio.
- b) En caso de vertidos o fugas desde barcos petroleros o cualquier otro tipo de barco o depósito fijo o flotante, se tomarán muestras del producto contaminante a 20 metros del vertido, en la estela de los hidrocarburos flotantes, en las playas o riberas afectadas y en los fondos.
- c) En caso de vertidos o fugas de suelo deberá enviarse muestra del producto original del vertido, muestras de suelo contaminado y de aguas de pozos o manantiales.
- d) En todos los casos, las muestras se tomarán después de la aplicación de emulgentes y dispersantes. Los recipientes se llenarán en su totalidad para evitar la pérdida de fracciones volátiles.

72. Según la Orden JUS/1291/2010, para realizar estudios medioambientales la toma de muestras según la clase del medio receptor en lagos y embalses:

- a) Se deben evitar áreas de turbulencia para minimizar la pérdida de componentes no volátiles en la muestra.
- b) Se deben evitar áreas de turbulencia para minimizar la pérdida de componentes volátiles en la muestra.
- c) Se muestreará desde lo más profundo ascendiendo progresivamente hasta la superficie.
- d) Se deberá remover el fondo, para recoger partículas sedimentadas.

73. Según la Orden JUS/1291/2010, para realizar estudios medioambientales la toma de muestras según clase de contaminante:

- a) Se tomarán muestras en el punto exacto de vertido antes de mezclarse con el medio receptor.
- b) Se tomarán muestras en el punto exacto de vertido después de mezclarse con el medio receptor.
- c) Se tomarán muestras a más de 500 metros del vertido después de mezclarse con el medio receptor.
- d) Se tomarán muestras a menos de 500 metros del vertido después de mezclarse con el medio receptor.

74. Según la Orden JUS/1291/2010, una de las normas generales de actuación para la recogida de muestras en caso de estudios de identificación genética es:

- a) Usar guantes limpios y no cambiarlos hasta que no se hayan recogido todas las muestras que se estimen oportunas.
- b) No añadir conservantes a las muestras.
- c) Añadir a las muestras oxalato potásico como conservante.
- d) Empaquetar todas las muestras en el mismo recipiente primario.

75. Según la Orden JUS/1291/2010, en la toma de muestras de referencia en el caso de estudios de identificación genética en personas vivas:

- a) Se tomará muestra de epitelio bucal con dos hisopos estériles secos.
- b) En el caso de muestras de pelos, se tomarán arrancados con raíz en cantidad suficiente para poder realizar el estudio, en cualquier caso, no inferior a veinte.
- c) Se tomará muestra de epitelio bucal con hisopos estériles húmedos.
- d) En el caso de muestra de sangre, se tomarán dos tubos de 5 ml sin anticoagulante y con conservante.

76. Según la Orden JUS/1291/2010, los estudios toxicológicos se clasifican en:

- a) En sujetos vivos y alijos.
- b) Muestras biológicas y alijos.
- c) Premortem, en sujetos vivos y de estupefacientes.
- d) Postmortem, en sujetos vivos y de estupefacientes.

77. Según la Orden JUS/1291/2010, el muestro para el estudio toxicológico de estupefacientes procedentes de alijos y otras sustancias requiere como mínimo:

- a) Un informe general de la incautación y una técnica de muestreo acreditada por ENAC.
- b) Un informe detallado de la incautación y una técnica de muestreo basada en métodos hipergeométrico o bayesiano o el método recomendado por las Naciones Unidas.
- c) Un informe general de la incautación y una técnica de muestreo basada en métodos hipergeométrico o bayesiano o el método recomendado por las Naciones Unidas.
- d) Un informe detallado de la incautación y una técnica de muestreo acreditada por ENAC.

78. Según la Orden JUS/1291/2010, señale la respuesta correcta en la recogida de indicios de fibras para estudios criminalísticos:

- a) En caso de fibras indubitadas, si la muestra se encuentra sobre un soporte que no se pueda transportar, se fragmentará el soporte y se remitirán al menos 5 fragmentos que sean representativos del color y del tipo de fibras de que se componga.
- b) En caso de fibras dubitadas, la recogida de fibras en uñas, se realizará recortando estas lo máximo posible y remitiéndolas conjuntamente, indicando su procedencia.
- c) En caso de fibras dubitadas, la recogida de fibras en el pelo, se realizará con unas pinzas.
- d) En caso de fibras dubitadas se remitirán las prendas o soportes sobre el que se encuentren las fibras, envasándose separadamente.

79. Según la Orden JUS/1291/2010, para realizar estudios antropológicos y odontológicos forenses de restos no esqueletizados:

- a) Se remitirán fragmentos del cráneo, el fémur y la tibia, región anterior de la parrilla costal, atlas, axis, alguna otra vértebra y el coxal. Todos provistos de partes blandas que habrán de ser retiradas.
- b) Se remitirá el cráneo completo, el fémur y la tibia, región anterior de la parrilla costal, atlas, axis, alguna otra vértebra y el coxal. Todos provistos de partes blandas.
- c) Se remitirá el cráneo completo, el fémur y la tibia, región anterior de la parrilla costal, atlas, axis, alguna otra vértebra y el coxal. Todos desprovistos de partes blandas que habrán de ser retiradas.
- d) Se remitirán fragmentos del cráneo, el fémur y la tibia, región anterior de la parrilla costal, atlas, axis, alguna otra vértebra y el coxal. Todos desprovistos de partes blandas que habrán de ser retiradas.

80. Para distinguir como separados dos puntos muy próximos en un microscopio óptico es necesario:

- a) Aumentar la distancia a la que se encuentran los oculares de la preparación.
- b) Aumentar la longitud de onda de la fuente de iluminación.
- c) Utilizar un objetivo de mayor apertura numérica.
- d) Interponer una sustancia de menor índice de refracción entre el objetivo y la preparación.

81. La capacidad para mostrar distintos y separados dos puntos muy próximos, se denomina:

- a) Amplitud de campo.
- b) Límite de resolución.
- c) Profundidad de campo.
- d) Poder de resolución.

82. En el microscopio óptico la capacidad de aumentar las imágenes se produce por la combinación de:

- a) Objetivo y oculares.
- b) Objetivo y condensador.
- c) Oculares y diafragma.
- d) Diafragma y condensador.

83. Los objetivos de un microscopio:

- a) Proporcionan una imagen virtual, aumentada e invertida del objeto que se observa.
- b) Proporcionan una imagen real, aumentada y derecha del objeto que se observa.
- c) Proporcionan una imagen real, aumentada e invertida del objeto que se observa.
- d) Proporcionan una imagen virtual, aumentada y derecha del objeto que se observa.

84. Respecto al microscopio electrónico de transmisión, señale la respuesta correcta:

- a) Las imágenes obtenidas son en color.
- b) Su mayor poder de resolución depende en gran parte de la mayor longitud de onda utilizada.
- c) Permite visualizar muestras sin limitación de grosor o tamaño.
- d) Las secciones se contrastan con metales pesados como el acetato de uranil-magnesio.

85. En la microscopía de fluorescencia, ¿qué sucede cuando una molécula fluorescente es excitada?

- a) Absorbe energía y emite luz de longitud de onda igual a la de excitación.
- b) Absorbe energía y emite luz de longitud de onda menor a la de excitación.
- c) Absorbe energía y emite luz de longitud de onda mayor a la de excitación.
- d) Absorbe energía pero no emite luz.

86. En el proceso de esterilización, el test de Bowie – Dick:

- a) Se coloca en la parte externa de cada paquete a esterilizar y nos permite distinguir cuál ha sido esterilizado y cuál no.
- b) Suele hacerse al comienzo de cada jornada, con el autoclave vacío y sirve para comprobar la correcta extracción de aire.
- c) Se coloca, al menos uno, en el interior de cada paquete a esterilizar y nos indica si el agente esterilizante ha penetrado en su interior.
- d) Nos confirma que tenemos un material estéril listo para ser utilizado.

87. ¿Cuál no es una etapa del ciclo de esterilización del autoclave de vapor?

- a) Desvaporización.
- b) Secado por vacío.
- c) Desinfección.
- d) Prevacío.

88. En el método de esterilización por peróxido de hidrógeno:

- a) Para la generación del plasma gas se aplica una energía de radio frecuencia, a alta temperatura y sin necesidad de vacío.
- b) Para la generación del plasma gas se aplica una energía de radio frecuencia, a baja temperatura y sin necesidad vacío.
- c) Para la generación del plasma gas se aplica una energía de radio frecuencia, a alta presión y temperatura.
- d) Para la generación del plasma gas se aplica una energía de radio frecuencia, a baja temperatura y en vacío.

89. La radiación gamma como método de esterilización:

- a) Es un tipo de radiación no ionizante con un alto poder de penetración.
- b) Se utiliza para esterilizar materiales termolábiles.
- c) Es un agente esterilizante menos eficaz que la radiación ultravioleta.
- d) Su longitud de onda está comprendida entre 190 y 390 nanómetros.

90. La reacción en cadena de la polimerasa (PCR) es una técnica analítica basada en la amplificación de ácidos nucleicos que consta de las siguientes fases:

- a) Multiplicación, extensión y secuenciación.
- b) Desnaturalización, hibridación con los cebadores y extensión.
- c) Desnaturalización, multiplicación y separación con los cebadores.
- d) Multiplicación, separación con los cebadores y secuenciación.

91. En la amplificación del material genético se utilizan microsatélites STR que son:

- a) Secuencias de ADN cortas, repetitivas y muy similares entre individuos.
- b) Secuencias de ADN cortas, no repetitivas y muy variables entre individuos.
- c) Secuencias de ADN cortas, repetitivas y muy polimórficas.
- d) Secuencias de ADN largas, no repetitivas y muy polimórficas.

92. Para confirmar la presencia de sangre humana en una muestra biológica se utiliza:

- a) Test inmunocromatográfico específico para el antígeno de hemocianina.
- b) Test inmunocromatográfico específico para la proteína C reactiva.
- c) Test inmunocromatográfico específico para el antígeno humano de glicoforina A.
- d) Test inmunocromatográfico específico para la proteína de Tamm-Horsfall.

93. El test de Adler:

- a) Es una prueba orientativa utilizada en el diagnóstico de manchas de sangre que posee una baja sensibilidad, pero muy alta especificidad.
- b) Es una prueba que confirma la naturaleza sanguínea de la muestra biológica y que está basada en la capacidad de las peroxidasas sanguíneas para descomponer el peróxido de hidrógeno.
- c) Es una prueba orientativa sobre la posible presencia de sangre, si bien un resultado positivo no asegura la presencia de sangre.
- d) Resulta concluyente si se obtiene un resultado negativo, pudiendo afirmarse sin lugar a duda que no existe sangre en la muestra estudiada.

94. El test de identificación de semen, RSID-Semen:

- a) Es un test inmunocromatográfico presuntivo de semen humano específico para el antígeno espermina humana.
- b) Es menos específico que la prueba del α -naftil-fosfato.
- c) Presenta inhibición por la presencia de secreciones vaginales.
- d) Utiliza dos anticuerpos monoclonales específicos para la semenogelina.

95. ¿Cuál es la prueba que permite confirmar la presencia de semen en individuos vasectomizados?

- a) Prueba de la amilasa positiva.
- b) Prueba de la espermatasa positiva.
- c) Prueba de la proteína P-30 positiva.
- d) Visualización microscópica de espermatozoides.

96. Si se obtiene un resultado negativo para el PSA-Seratec, ¿qué observamos?

- a) Una línea continua en la ventana T de muestra y una línea continua en la ventana de estándar interno.
- b) Una línea continua en la ventana C de control y una línea continua en la ventana de estándar interno.
- c) Una línea continua en la ventana T de muestra, una línea continua en la ventana C de control y una línea continua en la ventana de estándar interno.
- d) No aparece ninguna línea en la ventana T de muestra ni en la ventana C de control, pero sí en la ventana de estándar interno.

97. Respecto a la lámpara de luz forense utilizada para la búsqueda y visualización de restos biológicos que no son visibles con luz ambiental, es cierto que:

- a) La mancha iluminada se observará más oscura que el soporte si hay absorción de luz, más clara que el soporte si hay dispersión de luz, y aparecerá iluminada sobre fondo oscuro en caso de fluorescencia.
- b) La mancha iluminada se observará más clara que el soporte si hay absorción de luz, más oscura que el soporte si hay dispersión de luz, y aparecerá oscurecida sobre fondo claro en caso de fluorescencia.
- c) La mancha iluminada se observará más oscura que el soporte tanto si hay absorción como dispersión de luz, y aparecerá iluminada sobre fondo oscuro en caso de fluorescencia.
- d) La mancha iluminada cambiará de color dependiendo de la intensidad de la luz utilizada en caso de absorción y dispersión, pero no se verá afectada por la fluorescencia.

98. Según la Orden JUS/1291/2010 de 13 de mayo, para estudios de identificación genética, en el caso de personas vivas transfundidas recientemente, se enviarán como muestras de referencia:

- a) 5ml de sangre en un tubo con EDTA como anticoagulante.
- b) 5ml de sangre en un tubo con EDTA como anticoagulante o una toma bucal.
- c) 5ml de sangre en un tubo con EDTA como anticoagulante y una toma bucal.
- d) Las personas transfundidas no pueden utilizarse como muestras de referencia.

99. Según la Orden JUS/1291/2010 de 13 de mayo, en la identificación de indicios biológicos en casos de agresión sexual, es cierto que:

- a) El lavado vaginal se recogerá antes de la toma con hisopos, la cual debe realizarse de la zona exterior a la interior, primero la vulva, después la cavidad vaginal y por último el cuello uterino para no arrastrar hacia adentro los posibles restos.
- b) La toma de hisopos deberá realizarse de la zona interior a la exterior, primero el cuello uterino, después la cavidad vaginal y por último la vulva para no arrastrar hacia fuera los posibles restos y, seguidamente, se llevará a cabo la toma de lavado vaginal.
- c) El lavado vaginal se recogerá antes de la toma con hisopos, la cual debe realizarse de la zona interior a la exterior, primero el cuello uterino, después la cavidad vaginal y por último la vulva para no arrastrar hacia fuera los posibles restos.
- d) La toma de hisopos deberá realizarse de la zona exterior a la interior, primero la vulva, después la cavidad vaginal y por último el cuello uterino para no arrastrar hacia adentro los posibles restos y, seguidamente, se llevará a cabo la toma de lavado vaginal.

100. De las siguientes afirmaciones sobre las resinas epoxi, señale cuál es incorrecta:

- a) Están basadas en la polimerización de una sustancia y su transformación en un material sólido y transparente.
- b) Se solidifican por acción de la luz polarizada.
- c) Posibilitan el corte de secciones ultrafinas.
- d) Son más duras que la parafina.

RESERVA

101. El detector de emisión atómica (AED) se basa en la emisión de energía de los átomos:

- a) Al pasar a su estado excitado.
- b) Al volver a su estado excitado.
- c) Al volver a su estado fundamental.
- d) Al pasar a su estado ionizado.

102. Según la Orden JUS/1291/2010 de 13 de mayo, una de las precauciones que debe tomarse para proteger las muestras destinadas a estudios microbiológicos en casos de muerte de etiología no aclarada es:

- a) No se debe emplear el oxalato como anticoagulante, ni el fluoruro como conservante.
- b) Las muestras de sangre y otros fluidos corporales, exudado nasofaríngeo, orina y heces se tomarán al final de la autopsia.
- c) Los exudados se deberán recoger mediante hisopos de algodón con vástagos de madera.
- d) Si se sospecha una infección por aerobios, se inocularán en un vial de anaerobios que se enviará inmediatamente, sin refrigeración.

103. ¿Qué agente deshidratante es el más comúnmente utilizado en los procedimientos de inclusión?

- a) Alcohol etílico.
- b) Alcohol metílico.
- c) Alcohol butílico.
- d) Alcohol isopropílico

104. Según la Orden JUS/1291/2010 de 13 de mayo, las muestras para estudios toxicológicos postmorten no incluyen:

- a) Bilis.
- b) Fluido oral.
- c) Fármacos encontrados en el lugar de los hechos.
- d) Líquido pericárdico.